Molecular co-localization of multiple drugs in a nanoscopic delivery vehicle for potential synergistic remediation of multi-drug resistant bacteria

Author:

Banerjee Amrita,Mukherjee Dipanjan,Bera Arpan,Ghosh Ria,Mondal Susmita,Mukhopadhyay Subhadipta,Das Ranjan,Altass Hatem M.,Natto Sameer. S. A.,Moussa Ziad,Ahmed Saleh A.,Chattopadhyay Arpita,Pal Samir Kumar

Abstract

AbstractAnti-microbial resistant infection is predicted to be alarming in upcoming years. In the present study, we proposed co-localization of two model drugs viz., rifampicin and benzothiazole used in anti-tuberculosis and anti-fungal agents respectively in a nanoscopic cationic micelle (cetyl triethyl ammonium bromide) with hydrodynamic diameter of 2.69 nm. Sterilization effect of the co-localized micellar formulation against a model multi-drug resistant bacterial strain viz., Methicillin resistant Staphylococcus aureus was also investigated. 99.88% decrease of bacterial growth in terms of colony forming unit was observed using the developed formulation. While Dynamic Light Scattering and Forsters Resonance Energy Transfer between benzothiazole and rifampicin show co-localization of the drugs in the nanoscopic micellar environment, analysis of time-resolved fluorescence decays by Infelta-Tachiya model and the probability distribution of the donor–acceptor distance fluctuations for 5 μM,10 μM and 15 μM acceptor concentrations confirm efficacy of the co-localization. Energy transfer efficiency and the donor acceptor distance are found to be 46% and 20.9 Å respectively. We have also used a detailed computational biology framework to rationalize the sterilization effect of our indigenous formulation. It has to be noted that the drugs used in our studies are not being used for their conventional indication. Rather the co-localization of the drugs in the micellar environment shows a completely different indication of their use in the remediation of multi-drug resistant bacteria revealing the re-purposing of the drugs for potential use in hospital-born multi-drug resistant bacterial infection.

Funder

APJ Abdul Kalam Technological University

United Arab Emirates University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3