Study of microstructure and corrosion behavior of nano-Al2O3 coating layers on TiO2 substrate via polymeric method and microwave combustion

Author:

El-Hamid H. K. Abd,Gaber A. A.,Ngida Rehab E. A.,Sadek H. E. H.,Khattab R. M.,Mandour Howida S.

Abstract

AbstractThe study describes the successful development of a TiO2 ceramic substrate with a protective nano-Al2O3 coating using two different coating techniques: microwave combustion and polymeric methods. The coated ceramics demonstrate enhanced corrosion resistance compared to the uncoated substrate. The optimal TiO2 substrate was prepared by firing it at 1000 °C. This was done to give the desired physical properties of the TiO2 substrate for the coating procedures. Nano-Al2O3 powder was coated onto the surface of the TiO2 substrates. The TiO2 substrates with the Al2O3 coating were then calcined (heat-treated) at 800 and 1000 °C. The structures, morphology, phase composition, apparent porosity, bulk density, and compressive strength of the substrate and coated substrate were characterized. Upon firing at 1000 °C, it was discovered that the two phases of TiO2—rutile and anatase—combine in the substrate. Once the substrate has been coated with nano Al2O3 at 1000 °C, the anatase is transferred into rutile. When compared to the substrate, the coated substrate resulted in a decrease in porosity and an increase in strength. The efficiency of the ceramic metal nanoparticles Al2O3 as a good coating material to protect the TiO2 substrates against the effect of the corrosive medium 0.5 M solution of H2SO4 was measured by two methods: potentio-dynamic polarization (PDP) and the electrochemical impedance spectroscopy (EIS). The results indicated that the corrosion rate was decreased after the substrate coated with alumina from (67.71 to 16.30 C.R. mm/year) and the percentage of the inhibition efficiency recorded a high value reaching (78.56%). The surface morphology and composition after electrochemical measurements are investigated using SEM and EDX analysis. After conducting the corrosion tests and all the characterization, the results indicated that the coated TiO2 substrate prepared by the polymeric method at 800 °C displayed the best physical, mechanical, and corrosion-resistant behavior.

Funder

National Research Centre

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3