Machine learning models for efficient characterization of Schottky barrier photodiode internal parameters

Author:

Ocaya Richard O.,Akinyelu Andronicus A.,Al-Sehemi Abdullah G.,Dere Ayşegul,Al-Ghamdi Ahmed A.,Yakuphanoğlu Fahrettin

Abstract

AbstractWe propose ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on thirty-six private datasets from three previously published devices, which denote current responses under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%. The illumination ranged from dark (0 mW/cm2) to 30 mW/cm2. The predictions are then made completely at the intensity of 60 mW/cm2. For each diode, some values of the barrier height ($$\phi $$ ϕ ), ideality factor (n), and series resistance ($$R_s$$ R s ) independently calculated using the Cheung–Cheung method were included in the training dataset. The predictions are done at unspecified intensities on the model development data at 80 and 100 mW/cm2, and on external data at 5% and 20% GO doping which were not part of the development dataset. The ANN achieved a mean square error and mean absolute error score below 0.003 across all datasets. This demonstrates the effective learning capabilities of the ANN models in accurately capturing the photo responses of the photodiodes and accurately predicting the internal parameters of the Schottky Barrier Diodes (SBDs), all without relying on an inherent understanding of the thermionic emission (TE) equation for SBDs. The ANN models achieved high accuracy in this process. The proposed ML models can significantly reduce analysis time in device development cycles and can be applied to other datasets in various fields.

Funder

Research Center for Advanced Materials Science, King Khalid University

Firat University Scientific Research Projects Management Unit

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3