Analysis and evaluation of explainable artificial intelligence on suicide risk assessment

Author:

Tang Hao,Miri Rekavandi Aref,Rooprai Dharjinder,Dwivedi Girish,Sanfilippo Frank M.,Boussaid Farid,Bennamoun Mohammed

Abstract

AbstractThis study explores the effectiveness of Explainable Artificial Intelligence (XAI) for predicting suicide risk from medical tabular data. Given the common challenge of limited datasets in health-related Machine Learning (ML) applications, we use data augmentation in tandem with ML to enhance the identification of individuals at high risk of suicide. We use SHapley Additive exPlanations (SHAP) for XAI and traditional correlation analysis to rank feature importance, pinpointing primary factors influencing suicide risk and preventive measures. Experimental results show the Random Forest (RF) model is excelling in accuracy, F1 score, and AUC (>97% across metrics). According to SHAP, anger issues, depression, and social isolation emerge as top predictors of suicide risk, while individuals with high incomes, esteemed professions, and higher education present the lowest risk. Our findings underscore the effectiveness of ML and XAI in suicide risk assessment, offering valuable insights for psychiatrists and facilitating informed clinical decisions.

Funder

EMHS Mental Health Research

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. Organization, W. H. et al. Suicide Worldwide in 2019: Global Health Estimates. (World Health Organization and others, 2021).

2. Michael, L. White male suicide: The exception to privelege (accessed october 5, 2023). https://yaleglobalhealthreview.com/2017/05/14/white-male-suicide-the-exception-to-privelege/ (2017).

3. of Health, A. I. & Welfare. Deaths in australia Accessed 5 Oct 2023. https://www.aihw.gov.au/reports/life-expectancy-deaths/deaths-in-australia/contents/leading-causes-of-death (2023).

4. Gao, M. et al. Multimodal brain connectome-based prediction of suicide risk in people with late-life depression. Nat. Ment. Health 1, 100–113 (2023).

5. Kamimura, H. et al. The associations between suicide-related behaviors, prefrontal dysfunction in emotional cognition, and personality traits in mood disorders. Sci. Rep. 12, 17377 (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3