Author:
Manju P.,Hardman K. S.,Wigley P. B.,Close J. D.,Robins N. P.,Szigeti S. S.
Abstract
AbstractWe numerically demonstrate atomic Fabry–Perot resonances for a pulsed interacting Bose–Einstein condensate (BEC) source transmitting through double Gaussian barriers. These resonances are observable for an experimentally-feasible parameter choice, which we determined using a previously-developed analytical model for a plane matter-wave incident on a double rectangular barrier system. Through numerical simulations using the non-polynomial Schödinger equation—an effective one-dimensional Gross–Pitaevskii equation—we investigate the effect of atom number, scattering length, and BEC momentum width on the resonant transmission peaks. For $$^{85}$$
85
Rb atomic sources with the current experimentally-achievable momentum width of $$0.02 \hbar k_0$$
0.02
ħ
k
0
[$$k_0 = 2\pi /(780~\text {nm})$$
k
0
=
2
π
/
(
780
nm
)
], we show that reasonably high contrast Fabry–Perot resonant transmission peaks can be observed using (a) non-interacting BECs, (b) interacting BECs of $$5 \times 10^4$$
5
×
10
4
atoms with s-wave scattering lengths $$a_s=\pm 0.1a_0$$
a
s
=
±
0.1
a
0
($$a_0$$
a
0
is the Bohr radius), and (c) interacting BECs of $$10^3$$
10
3
atoms with $$a_s=\pm 1.0a_0$$
a
s
=
±
1.0
a
0
. Our theoretical investigation impacts any future experimental realization of an atomic Fabry–Perot interferometer with an ultracold atomic source.
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Gallatin, G. M. & Gould, P. L. Laser focusing of atomic beams. JOSA B 8, 502–508. https://doi.org/10.1364/JOSAB.8.000502 (1991).
2. Balykin, V. I., Letokhov, V. S., Ovchinnikov, Y. B. & Sidorov, A. I. Reflection of an atomic beam from a gradient of an optical field. JETP Lett. 45, 353–356 (1987).
3. Moskowitz, P. E., Gould, P. L., Atlas, S. R. & Pritchard, D. E. Diffraction of an atomic beam by standing-wave radiation. Phys. Rev. Lett. 51, 370–373. https://doi.org/10.1103/PhysRevLett.51.370 (1983).
4. Becker, U. Molecular physics: Matter-wave interference made clear. Nature 474, 586–587. https://doi.org/10.1038/474586a (2011).
5. Bongs, K. et al. Waveguide for Bose-Einstein condensates. Phys. Rev. A 63, 031602. https://doi.org/10.1103/PhysRevA.63.031602 (2001).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献