Abstract
AbstractIntracranial compliance (ICC) refers to the change in intracranial volume per unit change in intracranial pressure (ICP). Magnetic resonance elastography (MRE) quantifies brain stiffness by measuring the shear modulus. Our objective is to investigate the relationship between ICC and brain stiffness through fluid–structure interaction (FSI) simulation, and to explore the feasibility of using MRE to assess ICC based on brain stiffness. This is invaluable due to the clinical importance of ICC, as well as the fast and non-invasive nature of the MRE procedure. We employed FSI simulation in hydrocephalus patients with aqueductal stenosis to non-invasively calculate ICP which is the basis of the calculation of ICC and FSI-based brain stiffness. The FSI simulated parameters used have been validated with experimental data. Our results showed that there is no relationship between FSI simulated-based brain stiffness and ICC in hydrocephalus patients. However, MRE-based brain stiffness may be sensitive to changes in intracranial fluid dynamic parameters such as cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and ICP, as well as to mechano-vascular changes in the brain, which are determining parameters in ICC assessment. Although optimism has been found regarding the assessment of ICC using MRE-based brain stiffness, especially for acute-onset brain disorders, further studies are necessary to clarify their direct relationship.
Funder
Margaret Hackett Family Program
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献