Deep neural network recognition of shallow water corals in the Gulf of Eilat (Aqaba)

Author:

Raphael Alina,Dubinsky Zvy,Iluz David,Benichou Jennifer I. C.,Netanyahu Nathan S.

Abstract

AbstractWe describe the application of the computerized deep learning methodology to the recognition of corals in a shallow reef in the Gulf of Eilat, Red Sea. This project is aimed at applying deep neural network analysis, based on thousands of underwater images, to the automatic recognition of some common species among the 100 species reported to be found in the Eilat coral reefs. This is a challenging task, since even in the same colony, corals exhibit significant within-species morphological variability, in terms of age, depth, current, light, geographic location, and inter-specific competition. Since deep learning procedures are based on photographic images, the task is further challenged by image quality, distance from the object, angle of view, and light conditions. We produced a large dataset of over 5,000 coral images that were classified into 11 species in the present automated deep learning classification scheme. We demonstrate the efficiency and reliability of the method, as compared to painstaking manual classification. Specifically, we demonstrated that this method is readily adaptable to include additional species, thereby providing an excellent tool for future studies in the region, that would allow for real time monitoring the detrimental effects of global climate change and anthropogenic impacts on the coral reefs of the Gulf of Eilat and elsewhere, and that would help assess the success of various bioremediation efforts.

Funder

Ministry of energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep learning-based method and system for processing marine environmental data;Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024);2024-07-10

2. #DeOlhoNosCorais: a polygonal annotated dataset to optimize coral monitoring;PeerJ;2023-11-06

3. Stony Coral Species Recognition System Using Deep Learning;2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS);2023-09-06

4. Satellite-derived sediment distribution mapping using ICESat-2 and SuperDove;ISPRS Journal of Photogrammetry and Remote Sensing;2023-08

5. Deep Learning Architecture based Multi Class Coral Reef Image Classification;OCEANS 2023 - Limerick;2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3