Author:
Douchet Léa,Haramboure Marion,Baldet Thierry,L’Ambert Gregory,Damiens David,Gouagna Louis Clément,Bouyer Jeremy,Labbé Pierrick,Tran Annelise
Abstract
AbstractThe expansion of mosquito species worldwide is creating a powerful network for the spread of arboviruses. In addition to the destruction of breeding sites (prevention) and mass trapping, methods based on the sterile insect technique (SIT), the autodissemination of pyriproxyfen (ADT), and a fusion of elements from both of these known as boosted SIT (BSIT), are being developed to meet the urgent need for effective vector control. However, the comparative potential of these methods has yet to be explored in different environments. This is needed to propose and integrate informed guidelines into sustainable mosquito management plans. We extended a weather-dependent model of Aedes albopictus population dynamics to assess the effectiveness of these different vector control methods, alone or in combination, in a tropical (Reunion island, southwest Indian Ocean) and a temperate (Montpellier area, southern France) climate. Our results confirm the potential efficiency of SIT in temperate climates when performed early in the year (mid-March for northern hemisphere). In such a climate, the timing of the vector control action was the key factor in its success. In tropical climates, the potential of the combination of methods becomes more relevant. BSIT and the combination of ADT with SIT were twice as effective compared to the use of SIT alone.
Publisher
Springer Science and Business Media LLC
Reference111 articles.
1. Smith, C. E. G. The history of dengue in tropical asia and its probable relationship to the mosquito aedes aegypti. J. Trop. Med. Hyg. 59, 243–51 (1956).
2. Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosquito Control Assoc. 14, 83–94 (1998).
3. Lounibos, L. P. Invasions by insect vectors of human disease. Ann. Rev. Entomol. 47, 233–266. https://doi.org/10.1146/annurev.ento.47.091201.145206 (2002).
4. Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295. https://doi.org/10.1111/mec.12925 (2015).
5. Sota, T. & Mogi, M. Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomologia Experimentalis et Applicata 63, 155–161. https://doi.org/10.1111/j.1570-7458.1992.tb01570.x (1992).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献