Author:
Badparvar Fahimeh,Marjani Ahmad Poursattar,Salehi Roya,Ramezani Fatemeh
Abstract
AbstractA novel pH/redox-responsive hyperbranched MeO-PEG-b-(NIPAAm-co-PBAE) nanoparticles (NPs) were designed with size shrinkage and charge-reversible potential for targeted delivery of docetaxel (DTX) to MDA-MB-231 cell lines. In the tumor microenvironment (TME), amine protonation induces charge reversal and disulfide bond cleavage under high TME GSH concentration causing size shrinkage, improved deep tumor penetration, and active targeting of the therapeutic agents. These nano drug delivery systems (NDDSs) significantly promoted cancer cell uptake (~ 100% at 0.5 h), facilitating site-specific delivery and deep tumor penetration. The MTT assay revealed significantly higher cytotoxicity (P value < 0.0001) for DTX-loaded NPs compared to free DTX. Cell cycle analysis revealed G2/M (58.3 ± 2.1%) and S (21.5 ± 1.3%) arrest for DTX-loaded NPs, while free DTX caused G2/M (67.9 ± 1.1%) and sub-G1 (10.3 ± 0.8%) arrest. DTX-loaded NPs induced higher apoptosis (P value < 0.001) in MDA-MB-231 cells (71.5 ± 2.8%) compared to free DTX (42.3 ± 3.1%). Western blotting and RT-PCR assays confirmed significant up-regulation of protein levels and apoptotic genes by DTX-loaded NPs compared to free DTX. In conclusion, TME-responsive charge reversal and size-shrinkable smart NDDSs designed based on low pH, and high glutathione (GSH), offer more effective site-specific delivery of therapeutic agents to tumors.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献