Physiological and biochemical mechanisms of grain yield loss in fumitory (Fumaria parviflora Lam.) exposed to copper and drought stress

Author:

Tashakorizadeh Mansoureh,Golkar Pooran,Vahabi Mohammad Reza,Ghorbanpour Mansour

Abstract

AbstractSoil contamination with heavy metals adversely affects plants growth, development and metabolism in many parts of the world including arid and semi-arid regions. The aim of this study was to investigate the single and combined effects of drought and copper (Cu) stresses on seed yield, and biochemical traits of Fumaria parviflora in a split – factorial experiment at Research Field of Payam-E-Noor university of Kerman during 2019. The collected seeds from two Cu contaminated regions were evaluated under drought and Cu (0, 50, 150, 300, and 400 mg/kg) stresses. Drought stress levels were depletion of 50% (D1), 70% (D2) and 85% (D3) soil available water. The individual effects of drought and copper stresses were similar to each other as both reduced seed yield. The highest seed yield was observed at Cu concentration of 50 mg/kg under non-drought stress conditions. The maximum values of malondialdehyde (0.47 µmol/g), proline (2.45 µmol/g FW), total phenolics (188.99 mg GAE/g DW) and total flavonoids (22.1 mg QE/g DW) were observed at 400 mg/kg Cu treatment. However, the strongest antioxidant activity (83.95%) through DPPH assay, and the highest total soluble carbohydrate (115.23 mg/g DW) content were observed at 300 and 150 mg/kg Cu concentration under severe drought stress, respectively. The highest amount of anthocyanin (2.18 µmol/g FW) was observed at 300 mg/kg Cu and moderate drought stress. The findings of this study showed a high tolerance of F. parviflora plant to moderate drought stress and Cu exposure up to 150 mg/kg by modulating defense mechanisms, where grain yield was slightly lower than that of control. The results could also provide a criterion for the selection of tolerance species like F. parviflora for better acclimatization under Cu mines and/or agricultural contaminated soils subjected to drought stress.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3