Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
-
Published:2022-05-12
Issue:1
Volume:12
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Kiss SzabolcsORCID, Pintér József, Molontay RolandORCID, Nagy MarcellORCID, Farkas Nelli, Sipos Zoltán, Fehérvári Péter, Pecze László, Földi MáriaORCID, Vincze Áron, Takács Tamás, Czakó László, Izbéki Ferenc, Halász Adrienn, Boros Eszter, Hamvas József, Varga Márta, Mickevicius Artautas, Faluhelyi Nándor, Farkas Orsolya, Váncsa Szilárd, Nagy Rita, Bunduc StefaniaORCID, Hegyi Péter Jenő, Márta Katalin, Borka Katalin, Doros Attila, Hosszúfalusi Nóra, Zubek László, Erőss BálintORCID, Molnár ZsoltORCID, Párniczky Andrea, Hegyi PéterORCID, Szentesi Andrea, Kiss Szabolcs, Farkas Nelli, Sipos Zoltán, Fehérvári Péter, Pecze László, Földi Mária, Vincze Áron, Takács Tamás, Czakó László, Izbéki Ferenc, Halász Adrienn, Boros Eszter, Hamvas József, Varga Márta, Mickevicius Artautas, Faluhelyi Nándor, Farkas Orsolya, Váncsa Szilárd, Nagy Rita, Bunduc Stefania, Hegyi Péter Jenő, Márta Katalin, Borka Katalin, Doros Attila, Hosszúfalusi Nóra, Zubek László, Erőss Bálint, Molnár Zsolt, Párniczky Andrea, Hegyi Péter, Szentesi Andrea, Bajor Judit, Gódi Szilárd, Sarlós Patrícia, Czimmer József, Szabó Imre, Pár Gabriella, Illés Anita, Hágendorn Roland, Németh Balázs Csaba, Kui Balázs, Illés Dóra, Gajdán László, Dunás-Varga Veronika, Fejes Roland, Papp Mária, Vitális Zsuzsanna, Novák János, Török Imola, Macarie Melania, Ramírez-Maldonado Elena, Sallinen Ville, Galeev Shamil, Bod Barnabás, Ince Ali Tüzün, Pécsi Dániel, Varjú Péter, Juhász Márk Félix, Ocskay Klementina, Mikó Alexandra, Szakács Zsolt,
Abstract
AbstractPancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them.
Funder
Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Artificial Intelligence National Laboratory Programme Project Grant University of Pécs Medical School Research Fund University of Pécs
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference47 articles.
1. Boxhoorn, L. et al. Acute pancreatitis. Lancet (London, England) 396, 726–734. https://doi.org/10.1016/s0140-6736(20)31310-6 (2020). 2. Xiao, A. Y. et al. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 1, 45–55. https://doi.org/10.1016/s2468-1253(16)30004-8 (2016). 3. Berger, Z. et al. Acute pancreatitis in Chile. A multicenter study on epidemiology, etiology and clinical outcome. Retrospective analysis of clinical files. Pancreatology 20, 637–643. https://doi.org/10.1016/j.pan.2020.04.016 (2020). 4. Párniczky, A. et al. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS ONE 11, e0165309. https://doi.org/10.1371/journal.pone.0165309 (2016). 5. Aranda-Narvaez, J. M., Gonzalez-Sanchez, A. J., Montiel-Casado, M. C., Titos-Garcia, A. & Santoyo-Santoyo, J. Acute necrotizing pancreatitis: Surgical indications and technical procedures. World J. Clin. Cases 2, 840–845. https://doi.org/10.12998/wjcc.v2.i12.840 (2014).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|