Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases

Author:

Kiss SzabolcsORCID,Pintér József,Molontay RolandORCID,Nagy MarcellORCID,Farkas Nelli,Sipos Zoltán,Fehérvári Péter,Pecze László,Földi MáriaORCID,Vincze Áron,Takács Tamás,Czakó László,Izbéki Ferenc,Halász Adrienn,Boros Eszter,Hamvas József,Varga Márta,Mickevicius Artautas,Faluhelyi Nándor,Farkas Orsolya,Váncsa Szilárd,Nagy Rita,Bunduc StefaniaORCID,Hegyi Péter Jenő,Márta Katalin,Borka Katalin,Doros Attila,Hosszúfalusi Nóra,Zubek László,Erőss BálintORCID,Molnár ZsoltORCID,Párniczky Andrea,Hegyi PéterORCID,Szentesi Andrea,Kiss Szabolcs,Farkas Nelli,Sipos Zoltán,Fehérvári Péter,Pecze László,Földi Mária,Vincze Áron,Takács Tamás,Czakó László,Izbéki Ferenc,Halász Adrienn,Boros Eszter,Hamvas József,Varga Márta,Mickevicius Artautas,Faluhelyi Nándor,Farkas Orsolya,Váncsa Szilárd,Nagy Rita,Bunduc Stefania,Hegyi Péter Jenő,Márta Katalin,Borka Katalin,Doros Attila,Hosszúfalusi Nóra,Zubek László,Erőss Bálint,Molnár Zsolt,Párniczky Andrea,Hegyi Péter,Szentesi Andrea,Bajor Judit,Gódi Szilárd,Sarlós Patrícia,Czimmer József,Szabó Imre,Pár Gabriella,Illés Anita,Hágendorn Roland,Németh Balázs Csaba,Kui Balázs,Illés Dóra,Gajdán László,Dunás-Varga Veronika,Fejes Roland,Papp Mária,Vitális Zsuzsanna,Novák János,Török Imola,Macarie Melania,Ramírez-Maldonado Elena,Sallinen Ville,Galeev Shamil,Bod Barnabás,Ince Ali Tüzün,Pécsi Dániel,Varjú Péter,Juhász Márk Félix,Ocskay Klementina,Mikó Alexandra,Szakács Zsolt,

Abstract

AbstractPancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them.

Funder

Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Artificial Intelligence National Laboratory Programme

Project Grant

University of Pécs Medical School Research Fund

University of Pécs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3