Sustainable traditional grass cloth fiber dyeing using the Taguchi L16 (4^4) orthogonal design

Author:

Lin Lina,Jiang Tiancheng,Li Le,Pervez Md. Nahid,Zhang Cong,Yan Chao,Cai Yingjie,Naddeo Vincenzo

Abstract

AbstractFor many centuries, traditional grass cloth has been used as an important raw material for home textiles in China, but its market can be expanded by incorporating color. Reactive Red 2 (R2), Reactive Blue 194 (B194), and Reactive Orange 5 (O5) were used in this work to explore the dyeing behavior of sustainable traditional grass fiber using industrial dyeing methods. Initially, an L16 (4^4) orthogonal design was schematically applied to carry out the dyeing process and it was determined that the total dye fixation rate (T%) of B194 dye was the best among the three dyes. Accordingly, a statistical Taguchi technique was analyzed on a larger scale to optimize the dyeing process parameters (salt concentration, fixation time, fixation temperature, and solution pH) of B194, in which solution pH was found to be the most influential factor in achieving the highest T%. This phenomenon was also verified using analysis of variance (ANOVA), where the solution pH was found to be the biggest contributor (50%) and statistically significant (p < 0.05). Finally, confirmation tests were conducted under optimized conditions and a higher T% (53.18%) was determined compared to initial conditions (48.40%). Later, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to analyze the structural characteristics and found that grass cloth was chemically stable, yet gummy materials were still observed on their surface, which was also confirmed from digital photographs. Generally, the color coordinates and fastness properties were also satisfactory.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3