Simulation of the inelastic deformation of porous reservoirs under cyclic loading relevant for underground hydrogen storage

Author:

Kumar Kishan Ramesh,Honorio Herminio Tasinafo,Hajibeygi Hadi

Abstract

AbstractSubsurface geological formations can be utilized to safely store large-scale (TWh) renewable energy in the form of green gases such as hydrogen. Successful implementation of this technology involves estimating feasible storage sites, including rigorous mechanical safety analyses. Geological formations are often highly heterogeneous and entail complex nonlinear inelastic rock deformation physics when utilized for cyclic energy storage. In this work, we present a novel scalable computational framework to analyse the impact of nonlinear deformation of porous reservoirs under cyclic loading. The proposed methodology includes three different time-dependent nonlinear constitutive models to appropriately describe the behavior of sandstone, shale rock and salt rock. These constitutive models are studied and benchmarked against both numerical and experimental results in the literature. An implicit time-integration scheme is developed to preserve the stability of the simulation. In order to ensure its scalability, the numerical strategy adopts a multiscale finite element formulation, in which coarse scale systems with locally-computed basis functions are constructed and solved. Further, the effect of heterogeneity on the results and estimation of deformation is analyzed. Lastly, the Bergermeer test case—an active Dutch natural gas storage field—is studied to investigate the influence of inelastic deformation on the uplift caused by cyclic injection and production of gas. The present study shows acceptable subsidence predictions in this field-scale test, once the properties of the finite element representative elementary volumes are tuned with the experimental data.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3