Author:
Park Jeongho,Josephs Emilie,Konkle Talia
Abstract
AbstractWe can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying neural coding of depicted spatial scale, by examining the voxel tuning and topographic organization of brain responses. We created naturalistic yet carefully-controlled stimuli by constructing virtual indoor environments, and rendered a series of snapshots to smoothly sample between a close-up view of the central object and far-scale view of the full environment (object-to-scene continuum). Human brain responses were measured to each position using functional magnetic resonance imaging. We did not find evidence for a smooth topographic mapping for the object-to-scene continuum on the cortex. Instead, we observed large swaths of cortex with opposing ramp-shaped profiles, with highest responses to one end of the object-to-scene continuum or the other, and a small region showing a weak tuning to intermediate scale views. However, when we considered the population code of the entire ventral occipito-temporal cortex, we found smooth and linear representation of the object-to-scene continuum. Our results together suggest that depicted spatial scale information is encoded parametrically in large-scale population codes across the entire ventral occipito-temporal cortex.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献