Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads

Author:

Miller Samuel,Weiss Alison A.ORCID,Heineman William R.,Banerjee Rupak K.

Abstract

Abstract The presence of bacterial pathogens in water can lead to severe complications such as infection and food poisoning. This research proposes a point-of-care electroosmotic flow driven microfluidic device for rapid isolation and detection of E. coli in buffered solution (phosphate buffered saline solution). Fluorescent E. coli bound to magnetic microbeads were driven through the microfluidic device using both constant forward flow and periodic flow switching at concentrations ranging from 2 × 105 to 4 × 107 bacteria/mL. A calibration curve of fluorescent intensity as a function of bacteria concentration was created using both constant and switching flow, showing an increase in captured fluorescent pixel count as concentration increases. In addition, the use of the flow switching resulted in a significant increase in the capture efficiency of E. coli, with capture efficiencies up to 83% ± 8% as compared to the constant flow capture efficiencies (up to 39% ± 11%), with a sample size of 3 µL. These results demonstrate the improved performance associated with the use of the electroosmotic flow switching system in a point-of-care bacterial detection assay.

Funder

U.S. Department of Health & Human Services | CDC | National Institute for Occupational Safety and Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3