Author:
Cha Moon-Hyun,Hwang Jeongwoon
Abstract
AbstractThe effect of inhomogeneous quantum dot (QD) size distribution on the electronic transport of one-dimensional (1D) QD chains (QDCs) is theoretically investigated. The non-equilibrium Green function method is employed to compute the electron transmission probabilities of QDCs. The ensemble averaged transmission probability shows a close agreement with the conductivity equation predicted by Anderson et al. for a disordered electronic system. The fidelity of quantum transport is defined as the transmission performance of an ensemble of QDCs of length N (N-QDCs) to assess the robustness of QDCs as a practical electronic device. We found that the fidelity of inhomogeneous N-QDCs with the standard deviation of energy level distribution σε is a Lorentzian function of variable Nσε2. With these analytical expressions, we can predict the conductance and fidelity of any QDC characterized by (N, σε). Our results can provide a guideline for combining the chain length and QD size distributions for high-mobility electron transport in 1D QDCs.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 80, 353 (2016).
2. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).
3. Yang, J., Choi, M. K., Kim, D.-H. & Hyeon, T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 28, 1176–1207 (2016).
4. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).
5. Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献