Influence of the emulsifier on nanostructure and clinical application of liquid crystalline emulsions

Author:

Teeranachaideekul Veerawat,Soontaranon Siriwat,Sukhasem Supreeya,Chantasart Doungdaw,Wongrakpanich Amaraporn

Abstract

AbstractLiquid crystals are appealing in pharmaceutical and cosmetic fields due to their unique structures that combine the properties of both liquid and solid states. Forming an emulsion into liquid crystals can be affected by a number of factors, including the emulsion composition and temperature. Changing the types and concentrations of surfactants could be another factor that affects liquid crystals. Currently, most liquid crystal research focuses on the nanostructure of liquid crystal systems without evaluating the efficacy of liquid crystals clinically. In this study, liquid crystalline emulsions made from camellia seed oil with four different surfactants (Olivem 1000, Polyaquol-2W, Nikkomulese LC, and Lecinol S-10 with Tween 80) were created. The liquid crystal emulsions were formulated in the form of oil-in-water (o/w) emulsions with Camellia oleifera seed oil serving as the main ingredient in the oil phase (10% w/w). All formulations exhibited liquid crystal characteristics with lamellar structures as determined by the polarized light microscopy and small-angle X-ray scattering with supporting data of the nanostructure from wide-angle X-ray scattering and differential scanning calorimetry (DSC). They all showed good stability under normal (room temperature) and accelerated conditions (4 °C and 40 °C) in long-term storage (6 months). Using the reconstructed human epidermis as a skin model, all formulations did not cause skin irritation. In the clinical trial, all formulations were able to reduce transepidermal water loss (TEWL) and increase skin hydration immediately after application. This lasted at least 10 h. All formulations showed distinct Maltese crosses under the polarized light microscope with a positive result for liquid crystals in wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) methods. Moreover, among all formulations tested, Formulation D, which contained Lecinol S-10 and Tween 80 as emulsifiers, showed the most robust interaction between the surfactant and water molecules in the lamellar structure under DSC. The formulation was stable in long-term normal and accelerated conditions. Above all, Formulation D, which was formulated with Lecinol S-10 with Tween 80, had the best clinical result, was nonirritating to the skin, and can be used as a cream base in the pharmaceutical and cosmeceutical sectors.

Funder

Mahidol University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3