Boosting ridge for the extreme learning machine globally optimised for classification and regression problems

Author:

Peralez-González Carlos,Pérez-Rodríguez Javier,Durán-Rosal Antonio M.

Abstract

AbstractThis paper explores the boosting ridge (BR) framework in the extreme learning machine (ELM) community and presents a novel model that trains the base learners as a global ensemble. In the context of Extreme Learning Machine single-hidden-layer networks, the nodes in the hidden layer are preconfigured before training, and the optimisation is performed on the weights in the output layer. The previous implementation of the BR ensemble with ELM (BRELM) as base learners fix the nodes in the hidden layer for all the ELMs. The ensemble learning method generates different output layer coefficients by reducing the residual error of the ensemble sequentially as more base learners are added to the ensemble. As in other ensemble methodologies, base learners are selected until fulfilling ensemble criteria such as size or performance. This paper proposes a global learning method in the BR framework, where base learners are not added step by step, but all are calculated in a single step looking for ensemble performance. This method considers (i) the configurations of the hidden layer are different for each base learner, (ii) the base learners are optimised all at once, not sequentially, thus avoiding saturation, and (iii) the ensemble methodology does not have the disadvantage of working with strong classifiers. Various regression and classification benchmark datasets have been selected to compare this method with the original BRELM implementation and other state-of-the-art algorithms. Particularly, 71 datasets for classification and 52 for regression, have been considered using different metrics and analysing different characteristics of the datasets, such as the size, the number of classes or the imbalanced nature of them. Statistical tests indicate the superiority of the proposed method in both regression and classification problems in all experimental scenarios.

Funder

Research funds from Universidad Loyola Andalucía

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3