Genotoxicity and oxidative stress induction by calcium hydroxide, calcium titanate or/and yttrium oxide nanoparticles in mice

Author:

Mohamed Hanan R. H.,Farouk Ahmed H.,Elbasiouni Salma H.,Nasif Kirolls A.,Safwat Gehan,Diab Ayman

Abstract

AbstractIntensive uses of Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles increase their environmental release and human exposure separately or together through contaminated air, water and food. However, too limited data are available on their genotoxicity. Therefore, this study explored the effect of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs administration on the genotoxicityand oxidative stress induction in mice hepatic tissue. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs and Y2O3NPs separately or simultaneously together at a dose level of 50 mg/kg b.w. for two successive weeks (3 days per week). Marked induction of DNA damage noticed after oral administration of Ca(OH)2NPs or CaTiO3NPs alone together with high Ca(OH)2NPs induced reactive oxygen species (ROS) generation and a slight CaTiO3NPs induced ROS production were highly decreased after simultaneous coadministration of administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs up to the negative control level. Oral administration of Y2O3NPs alone also did not cause observable changes in the genomic DNA integrity and the ROS generation level compared to the negative control levels. Similarly, significant elevations in P53 gene expression and high reductions in Kras and HSP-70 genes expression were observed only after administration of Ca(OH)2NPs alone, while, remarkable increases in the Kras and HSP-70 genes expression and non-significant changes in p53 gene expression were noticed after administration of CaTiO3NPs and Y2O3NPs separately or simultaneously together with Ca(OH)2NPs. Conclusion: Ca(OH)2NPs exhibited the highest genotoxic effect through oxidative stress induction and disruption of apoptotic (p53 and Kras) and protective (HSP-70) genes expression. Slight DNA damage was noticed after CaTiO3NPs administration. However, administration of Y2O3NPs alone was non-genotoxic and coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs restored genomic DNA integrity and normal expression of apoptotic p53 and protective HSP-70 genes disrupted by Ca(OH)2NPs and CaTiO3NPs. Thus co-administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs is recommended to counter Ca(OH)2NPs and CaTiO3NPs induced genotoxicity and oxidative stress.

Funder

Faculty of Science, Cairo University

October University of Modern Sciences and Arts

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3