A pro-inflammatory and fibrous cap thinning transcriptome profile accompanies carotid plaque rupture leading to stroke

Author:

Bazan Hernan A.,Brooks Ashton J.,Vongbunyong Kenny,Tee Christin,Douglas Hunter F.,Klingenberg Natasha C.,Woods T. Cooper

Abstract

AbstractAtherosclerotic plaque rupture is the etiology of ischemic stroke and myocardial infarction. The molecular mechanisms responsible for rupture remain unclear, in part, due to the lack of data from plaques at the time of rupture. Ribosome-depleted total RNA was sequenced from carotid plaques obtained from patients undergoing carotid endarterectomy with high-grade stenosis and either (1) a carotid-related ischemic cerebrovascular event within the previous 5 days ('recently ruptured,' n = 6) or (2) an absence of a cerebrovascular event ('asymptomatic,' n = 5). Principal component analysis confirmed plaque rupture was responsible for the greatest percentage of the variability between samples (23.2%), and recently ruptured plaques were enriched for transcripts associated with inflammation and extracellular matrix degradation. Hierarchical clustering achieved differentiation of the asymptomatic from the recently ruptured plaques. This analysis also found co-expression of transcripts for immunoglobulins and B lymphocyte function, matrix metalloproteinases, and interferon response genes. Examination of the differentially expressed genes supported the importance of inflammation and inhibition of proliferation and migration coupled with an increase in apoptosis. Thus, the transcriptome of recently ruptured plaques is enriched with transcripts associated with inflammation and fibrous cap thinning and support further examination of the role of B lymphocytes and interferons in atherosclerotic plaque rupture.

Funder

National Institute of General Medical Sciences

Ochsner Health,United States

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3