Morphological, physio-biochemical, and molecular indications of heat stress tolerance in cucumber

Author:

El-Remaly Eman

Abstract

AbstractGlobal warming is a critical challenge limiting crop productivity. Heat stress during cucumber growing stages caused deterioration impacts on the flowering, fruit, and yield stages. In this study, “inbred line 1 and hybrid P1 × P2” (heat-tolerant) and “Barracuda” (heat-sensitive) were utilized to determine the heat tolerance in summer season. The heat injury index was used to exhibit the heat tolerance performance. The heat injury index for heat tolerant (HT) genotypes, on leaves (HIIL%) and female flowers (HIIF%), was less than 25 and 15 % in HT, compared to heat sensitive (HS) was more than 75 and 85%, respectively. Moreover, the content of leaf chlorophyll, proline, brassinosteroid (BRs), abscisic acid content (ABA), the activity of catalase (CAT, EC 1.11. 1.6), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) increased with the heat stress responses in HT plants. Expression pattern analyses of eight genes, related to POD (CSGY4G005180 and CSGY6G015230), SOD (CSGY4G010750 and CSGY1G026400), CAT (CsGy4G025230 and CsGy4G025240), and BR (CsGy6G029150 and CsGy6G004930) showed a significant increase in HT higher than in HS plants. This study furnishes valuable markers for heat tolerance genotypes breeding in cucumber and provides a basis for understanding heat-tolerance mechanisms.

Funder

Agricultural Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3