Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

Author:

Caihong Zhao,Nier Su,Hao Wang,Honglin Xing,Hailong Shen,Ling Yang

Abstract

AbstractThinning is an important silvicultural practice for improving the productivity and wood production in plantation forest. Different intensities of thinning management can affect tree growth and alter soil nutrient effectiveness, thus affecting soil fungal community structure and diversity. Our objective is to determine the soil factors and their regulatory mechanisms that influence stand growth by thinning, and to provide data to support the establishment of large diameter timber cultivation technology for Picea koraiensis. In this study, we conducted medium- and high-intensity thinning in 43a P. koraiensis plantation middle-aged forests and investigated the growth indexes, soil physicochemical properties, and fungal community diversity in rhizosphere and non-rhizosphere soils of the stands after thinning at different densities (904 plants/ha for control, 644 plants/ha for 30% thinning intensity, and 477 plants/ha for 50% thinning intensity). The results showed that all growth indicators (annual growth of tree height, diameter at breast height, height under live branches and crown width) of the plantation after high-intensity thinning (477 plants/ha) were higher than those of the control (no thinning, significant) and medium-intensity thinning (644 plants/ha). Mycorrhizal infection rate was higher at the beginning of the growing season than at the end of the growing season, and increased slightly with decreasing stand density. Compared to the control, all medium- and high-intensity thinning treatments significantly improved soil nutrient content (P < 0.05), including total carbon, total nitrogen, total phosphorus, total potassium, Available phosphorus and Available potassium. Fungal diversity was higher but lower in abundance than the control in both rhizosphere and non-rhizosphere soils after thinning. The number of OTUs and fungal richness and diversity indices of non-rhizosphere soil fungi were higher than those of rhizosphere soil fungi. In conclusion, this study provides new evidence that reasonable intercalation can increase the radial and vertical growth of P. koraiensis plantation forests and promote the diversity of subsurface soil fungal communities. It is shown that thinning intensity regulates biogeochemical cycles in P. koraiensis plantation ecosystems by affecting soil nutrients and fungal community structure. Therefore, 50% thinning intensity can be used to increase timber production in plantation forests during large diameter timber cultivation of P. koraiensis and improve predictions associated with achieving long-term forest management strategies.

Funder

the National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3