Study of machine learning techniques for outcome assessment of leptospirosis patients

Author:

Silva Andreia Ferreira da,Figueiredo Karla,Falcão Igor W. S.,Costa Fernando A. R.,da Rocha Seruffo Marcos César,de Moraes Carla Cristina Guimarães

Abstract

AbstractLeptospirosis is a global disease that impacts people worldwide, particularly in humid and tropical regions, and is associated with significant socio-economic deficiencies. Its symptoms are often confused with other syndromes, which can compromise clinical diagnosis and the failure to carry out specific laboratory tests. In this respect, this paper presents a study of three algorithms (Decision Tree, Random Forest and Adaboost) for predicting the outcome (cure or death) of individuals with leptospirosis. Using the records contained in the government National System of Aggressions and Notification (SINAN, in portuguese) from 2007 to 2017, for the state of Pará, Brazil, where the temporal attributes of health care, symptoms (headache, vomiting, jaundice, calf pain) and clinical evolution (renal failure and respiratory changes) were used. In the performance evaluation of the selected models, it was observed that the Random Forest exhibited an accuracy of 90.81% for the training dataset, considering the attributes of experiment 8, and the Decision Tree presented an accuracy of 74.29 for the validation database. So, this result considers the best attributes pointed out by experiment 10: time first symptoms medical attention, time first symptoms ELISA sample collection, medical attention hospital admission time, headache, calf pain, vomiting, jaundice, renal insufficiency, and respiratory alterations. The contribution of this article is the confirmation that artificial intelligence, using the Decision Tree model algorithm, depicting the best choice as the final model to be used in future data for the prediction of human leptospirosis cases, helping in the diagnosis and course of the disease, aiming to avoid the evolution to death.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3