Rapid and concise quantification of mycelial growth by microscopic image intensity model and application to mass cultivation of fungi

Author:

Lee Soo Kweon,Lee Ju Hun,Kim Hyeong Ryeol,Chun Youngsang,Lee Ja Hyun,Park Chulhwan,Yoo Hah Young,Kim Seung Wook

Abstract

AbstractThe microbial food fermentation industry requires real-time monitoring and accurate quantification of cells. However, filamentous fungi are difficult to quantify as they have complex cell types such as pellet, spores, and dispersed hyphae. In this study, numerous data of microscopic image intensity (MII) were used to develop a simple and accurate quantification method of Cordyceps mycelium. The dry cell weight (DCW) of the sample collected during the fermentation was measured. In addition, the intensity values were obtained through the ImageJ program after converting the microscopic images. The prediction model obtained by analyzing the correlation between MII and DCW was evaluated through a simple linear regression method and found to be statistically significant (R2 = 0.941, p < 0.001). In addition, validation with randomly selected samples showed significant accuracy, thus, this model is expected to be used as a valuable tool for predicting and quantifying fungal growth in various industries.

Funder

Seung Wook Kim

Hah Young Yoo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3