Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics

Author:

Samavatian Vahid,Fotuhi-Firuzabad Mahmud,Samavatian Majid,Dehghanian Payman,Blaabjerg Frede

Abstract

AbstractThe quantity and variety of parameters involved in the failure evolutions in solder joints under a thermo-mechanical process directs the reliability assessment of electronic devices to be frustratingly slow and expensive. To tackle this challenge, we develop a novel machine learning framework for reliability assessment of solder joints in electronic systems; we propose a correlation-driven neural network model that predicts the useful lifetime based on the materials properties, device configuration, and thermal cycling variations. The results indicate a high accuracy of the prediction model in the shortest possible time. A case study will evaluate the role of solder material and the joint thickness on the reliability of electronic devices; we will illustrate that the thermal cycling variations strongly determine the type of damage evolution, i.e., the creep or fatigue, during the operation. We will also demonstrate how an optimal selection of the solder thickness balances the damage types and considerably improves the useful lifetime. The established framework will set the stage for further exploration of electronic materials processing and offer a potential roadmap for new developments of such materials.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3