A general framework to model the fate of trace elements in anaerobic digestion environments

Author:

Maharaj Bikash Chandra,Mattei Maria Rosaria,Frunzo Luigi,van Hullebusch Eric D.,Esposito Giovanni

Abstract

AbstractDue to the multiplicity of biogeochemical processes taking place in anaerobic digestion (AD) systems and limitations of the available analytical techniques, assessing the bioavailability of trace elements (TEs) is challenging. Determination of TE speciation can be facilitated by developing a mathematical model able to consider the physicochemical processes affecting TEs dynamics. A modeling framework based on anaerobic digestion model no 1 (ADM1) has been proposed to predict the biogeochemical fate TEs in AD environments. In particular, the model considers the TE adsorption–desorption reactions with biomass, inerts and mineral precipitates, as well as TE precipitation/dissolution, complexation reactions and biodegradation processes. The developed model was integrated numerically, and numerical simulations have been run to investigate the model behavior. The simulation scenarios predicted the effect of (i) organic matter concentration, (ii) initial TEs concentrations, (iii) initial Ca–Mg concentrations, (iv) initial EDTA concentration, and (v) change in TE binding site density, on cumulative methane production and TE speciation. Finally, experimental data from a real case continuous AD system have been compared to the model predictions. The results prove that this modelling framework can be applied to various AD operations and may also serve as a basis to develop a model-predictive TE dosing strategy.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3