Anomalous tensile response of bacterial cellulose nanopaper at intermediate strain rates

Author:

Santmarti Alba,Liu Hon Wah,Herrera Natalia,Lee Koon-Yang

Abstract

AbstractNanocellulose network in the form of cellulose nanopaper is an important material structure and its time-dependent mechanical response is crucial in many of its potential applications. In this work, we report the influences of grammage and strain rate on the tensile response of bacterial cellulose (BC) nanopaper. BC nanopaper with grammages of 20, 40, 60 and 80 g m−2 were tested in tension at strain rates ranging from 0.1% s−1 to 50% s−1. At strain rates $$\le$$  2.5% s−1, both the tensile modulus and strength of the BC nanopapers stayed constant at ~ 14 GPa and ~ 120 MPa, respectively. At higher strain rates of 25% s−1 and 50% s−1 however, the tensile properties of the BC nanopapers decreased significantly. This observed anomalous tensile response of BC nanopaper is attributed to inertial effect, in which some of the curled BC nanofibres within the nanopaper structure do not have enough time to uncurl before failure at such high strain rates. Our measurements further showed that BC nanopaper showed little deformation under creep, with a secondary creep rate of only ~ 10–6 s−1. This stems from the highly crystalline nature of BC, as well as the large number of contact or physical crosslinking points between adjacent BC nanofibres, further reducing the mobility of the BC nanofibres in the nanopaper structure.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Mao, R. et al. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. J. Mater. Sci. 52, 9508–9519 (2017).

2. González, I. et al. From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21, 2599–2609 (2014).

3. FMI. The Global Market For Nanocellulose to 2030. (Future Markets Inc. Technology Report, 2019).

4. Shatkin, J. O. A., Wegner, T. H. & Bilek, E. M. T. E. D. Nanocellulose Markets. Tappi J. 13, 9–16 (2014).

5. Shanmugam, K., Doosthosseini, H., Varanasi, S., Garnier, G. & Batchelor, W. Nanocellulose films as air and water vapour barriers: A recyclable and biodegradable alternative to polyolefin packaging. Sustain. Mater. Technol. 22, e00115 (2019).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3