Author:
Ditges Ann-Kathrin,Diekhoff Torsten,Engelhard Nils,Muellner Maximilian,Pumberger Matthias,Schömig Friederike
Abstract
AbstractLumbar foraminal stenosis may be caused by osseous and soft tissue structures. Thus, both computed tomography (CT) and magnetic resonance imaging (MRI) play a role in the diagnostic algorithm. Recently, dual-energy CT (DECT) has been introduced for the detection of spinal disorders. Our study’s aim was to investigate the diagnostic accuracy of collagen-sensitive maps derived from DECT in detecting lumbar foraminal stenosis compared with standard CT and MRI. We retrospectively reviewed CT, DECT, and MRI datasets in patients with vertebral fractures between January 2015 and February 2017. Images were scored for presence and type of lumbar neuroforaminal stenosis. Contingency tables were calculated to determine diagnostic accuracy and interrater agreement was evaluated. 612 neuroforamina in 51 patients were included. Intraclass correlation coefficients for interrater reliability in detecting foraminal stenoses were 0.778 (95%-CI 0.643–0.851) for DECT, 0.769 (95%-CI 0.650–0.839) for CT, and 0.820 (95%-CI 0.673–0.888) for MRI. Both DECT and conventional CT showed good diagnostic accuracy in detecting lumbar foraminal stenosis but low sensitivities in detecting discoid stenosis. Thus, even though previous studies suggest that DECT has high diagnostic accuracy in assessing lumbar disc pathologies, we show that DECT does not provide additional information for detecting discoid stenosis compared with conventional CT.
Funder
Charité - Universitätsmedizin Berlin
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献