Landscape complexity effects on Brassicogethes aeneus abundance and larval parasitism rate: a two-year field study

Author:

Vilumets Silva,Kaasik Riina,Lof Marjolein,Kovács Gabriella,Holland John,Veromann EveORCID

Abstract

AbstractGlobal biodiversity has suffered a decline primarily attributed to landscape simplification and intensified agricultural practices. Agricultural environments, characterized by homogeneity and frequent disturbances, are often suboptimal habitats for various insect species. While agricultural fields do favour pests, they generally fail to provide suitable habitats for natural enemies. The inclusion of diverse supporting habitats, such as semi-natural habitats, grassy and woody field margins etc. surrounding agricultural fields, play a crucial role in fostering effective biodiversity conservation. Moreover, determining the influence of different adjacent habitat types is essential in elucidating their influence on pest abundance and parasitism rates. Our two-year field study focused on assessing the abundance of Brassicogethes aeneus and its parasitism rate. The findings revealed that the adjacent habitat type did not significantly increase pest abundance and the parasitism rate of B. aeneus larvae consistently stayed over the threshold for effective biological control throughout the fields. This was attributed to the high proportion (35 and 38% in the 2 study years) of semi-natural habitats within most of the 1 km radius study areas. While our study did not identify any specific adjacent habitat type or habitat within a 1 km radius that directly impacted B. aeneus abundance, it emphasises the intricate interplay between the pests, parasitism and the surrounding environment because the interactive effect of distance from the crop edge and habitat type had a significant influence on B. aeneus infestation levels but not on parasitism. Decision tree analysis suggests that > 18% semi-natural habitat is needed to ensure sufficient levels of parasitism for effective biological control. A comprehensive understanding of habitats that influence not only B. aeneus but also other pests is critical for the successful implementation of IPM strategies and conservation initiatives within the agricultural sector.

Funder

EC | EC Seventh Framework Programm | FP7 Food, Agriculture and Fisheries, Biotechnology

Eesti Teadusagentuur

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3