Predictive approach for liberation from acute dialysis in ICU patients using interpretable machine learning

Author:

Wang Tsai-Jung,Huang Chun-Te,Wu Chieh-Liang,Chen Cheng-Hsu,Wang Min-Shian,Chao Wen-Cheng,Huang Yi-Chia,Pai Kai-Chih

Abstract

AbstractRenal recovery following dialysis-requiring acute kidney injury (AKI-D) is a vital clinical outcome in critical care, yet it remains an understudied area. This retrospective cohort study, conducted in a medical center in Taiwan from 2015 to 2020, enrolled patients with AKI-D during intensive care unit stays. We aimed to develop and temporally test models for predicting dialysis liberation before hospital discharge using machine learning algorithms and explore early predictors. The dataset comprised 90 routinely collected variables within the first three days of dialysis initiation. Out of 1,381 patients who received acute dialysis, 27.3% experienced renal recovery. The cohort was divided into the training group (N = 1135) and temporal testing group (N = 251). The models demonstrated good performance, with an area under the receiver operating characteristic curve of 0.85 (95% CI, 0.81–0.88) and an area under the precision-recall curve of 0.69 (95% CI, 0.62–0.76) for the XGBoost model. Key predictors included urine volume, Charlson comorbidity index, vital sign derivatives (trend of respiratory rate and SpO2), and lactate levels. We successfully developed early prediction models for renal recovery by integrating early changes in vital signs and inputs/outputs, which have the potential to aid clinical decision-making in the ICU.

Funder

Taichung Veterans General Hospital

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3