Community similarity and species overlap between habitats provide insight into the deep reef refuge hypothesis

Author:

Montgomery Anthony D.,Fenner Douglas,Donahue Megan J.,Toonen Robert J.

Abstract

AbstractThe deep reef refuge hypothesis (DRRH) postulates that mesophotic coral ecosystems (MCEs) may provide a refuge for shallow coral reefs (SCRs). Understanding this process is an important conservation tool given increasing threats to coral reefs. To establish a better framework to analyze the DRRH, we analyzed stony coral communities in American Sāmoa across MCEs and SCRs to describe the community similarity and species overlap to test the foundational assumption of the DRRH. We suggest a different approach to determine species as depth specialists or generalists that changes the conceptual role of MCEs and emphasizes their importance in conservation planning regardless of their role as a refuge or not. This further encourages a reconsideration of a broader framework for the DRRH. We found 12 species of corals exclusively on MCEs and 183 exclusively on SCRs with another 63 species overlapping between depth zones. Of these, 19 appear to have the greatest potential to serve as reseeding species. Two additional species are listed under the U.S. Endangered Species Act, Acropora speciosa and Fimbriaphyllia paradivisa categorized as an occasional deep specialist and a deep exclusive species, respectively. Based on the community distinctiveness and minimal species overlap of SCR and MCE communities, we propose a broader framework by evaluating species overlap across coral reef habitats. This provides an opportunity to consider the opposite of the DRRH where SCRs support MCEs.

Funder

National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference75 articles.

1. Wilson, E. O. Introduction. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 1–3 (Joseph Henry Press, 1997).

2. Lovejoy, T. E. Biodiversity: what is it? in Biodiversity II: Understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 7–14 (Joseph Henry Press, 1997).

3. Ehrlich, P. R. & Wilson, E. O. Biodiversity studies: Science and policy. Science 253, 758–762 (1991).

4. Myers, R. A. & Ottensmeyers, C. A. Extinction risk in marine species. in Marine Conservation Biology: The Science of Maintaining the Sea’s Biodiversity (eds. Norse, E. A. & Crowder, L. B.) 58–79 (Island Press, 2005).

5. Reaka-Kudla, M. L. The global biodiversity of coral reefs: a comparison with rain forests. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 83–108 (Joseph Henry Press, 1997).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3