Author:
Pourrahmani Hossein,Hosseini Milad,Moussaoui Hamza,Oveisi Emad,Siavashi Majid,Van Herle Jan
Abstract
AbstractIn Proton Exchange Membrane Fuel Cells (PEMFCs), the presence of residual water within the Gas Diffusion Layer (GDL) poses challenges during cold starts and accelerates degradation. A computational model based on the Lattice Boltzmann Method (LBM) was developed to consider the capillary pressure inside the PEMFC and to analyze the exact geometries of the GDLs, which were obtained using the Computed Tomography scan. The novelty of this study is to suggest a methodology to compare the quantitative water removal performance of the GDLs without long-term experimental testing. Two different samples of GDLs were considered, pristine and aged. The results of quantitative measurements revealed the amount of water columns (breakthroughs) inside each sample. Considering the volume of 12,250,000 µm3 for each sample, the pristine and the aged samples are prone to have 774,200 µm3 (6.32%) and 1,239,700 µm3 (10.12%) as water columns in their porous domain. Micro-structural properties such as connectivity, mean diameter, effective diffusivity, etc. were also compared to observe the impacts of aging on the properties of the GDL.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献