Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications

Author:

Alotaibi Emran,Arab Mohamed G.,Abdallah Mohamed,Nassif Nadia,Omar Maher

Abstract

AbstractIntegrating sustainability goals into the selection of suitable soil stabilization techniques is a global trend. Several bio-inspired and bio-mediated soil stabilization techniques have been recently investigated as sustainable alternatives for traditional techniques known for their high carbon footprint. Enzyme Induced Carbonate Precipitation (EICP) is an emerging bio-inspired soil stabilization technology that is based on the hydrolysis of urea to precipitate carbonates that cement sand particles. A life cycle assessment (LCA) study was conducted to compare the use of traditional soil stabilization using Portland cement (PC) with bio-cementation via EICP over a range of environmental impacts. The LCA results revealed that EICP soil treatment has nearly 90% less abiotic depletion potential and 3% less global warming potential compared to PC in soil stabilization. In contrast, EICP in soil stabilization has higher acidification and eutrophication potentials compared to PC due to byproducts during the hydrolysis process. The sensitivity analysis of EICP emissions showed that reducing and controlling the EICP process emissions and using waste non-fate milk has resulted in significantly fewer impacts compared to the EICP baseline scenario. Moreover, a comparative analysis was conducted between EICP, PC, and Microbial Induced Carbonate Precipitation (MICP) to study the effect of treated soil compressive strength on the LCA findings. The analysis suggested that EICP is potentially a better environmental option, in terms of its carbon footprint, at lower compressive strength of the treated soils.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3