Computational simulation and modelling of uranium extraction using tributylphosphate through membrane extractor

Author:

Syah Rahmad,Ramadan Dadan,Elveny Marischa,Cao Yan,Khan Afrasyab,Abdi Hamid,Ghadiri Mahdi

Abstract

AbstractNon-disperse solvent extraction is an effective technique for the extraction of metal ions from aqueous solution. In this study, uranium extraction using n-dodecane solvent containing tributylphosphate extractant in a membrane contactor was investigated. A 2D mathematical model was developed for the fluid flow and mass transfer in the hollow fibre membrane extractor. The equations of the created model were solved using the finite element method. The uranium concentration distribution in the extractor at different extractant concentrations as well as feed acidity was studied. The results showed that there is reasonable good agreement between experimental uranium extraction and modelling outputs at different extractant concentrations. Increasing extractant concentration from 5 to 30% led to the enhancement of uranium extraction from 2.60 to 34.13%. Also, there was an increase in the uranium extraction with increasing feed acidity in the range of 1–3 M. Furthermore, based on the radial uranium concentration distribution, it was found that the main mass transfer resistance in the system was microporous membrane section. Finally, it was obtained that the uranium extraction efficiency could be improved significantly by increasing porosity-to-tortuosity ratio. It was concluded that the membrane specification plays the most important role as the dominant mass transfer resistant was in the membrane subdomain.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3