Integrated Counts of Carbohydrate-Active Protein Domains as Metabolic Readouts to Distinguish Probiotic Biology and Human Fecal Metagenomes

Author:

Liu Hong-Hsing,Lin Yu-Chen,Chung Chen-Shuan,Liu Kevin,Chang Ya-Hui,Yang Chung-Hsiang,Chen Yun,Ni Yen-Hsuan,Chang Pi-Feng

Abstract

AbstractBowel microbiota is a “metaorgan” of metabolisms on which quantitative readouts must be performed before interventions can be introduced and evaluated. The study of the effects of probiotic Clostridium butyricum MIYAIRI 588 (CBM588) on intestine transplantees indicated an increased percentage of the “other glycan degradation” pathway in 16S-rRNA-inferred metagenomes. To verify the prediction, a scoring system of carbohydrate metabolisms derived from shotgun metagenomes was developed using hidden Markov models. A significant correlation (R = 0.9, p < 0.015) between both modalities was demonstrated. An independent validation revealed a strong complementarity (R = −0.97, p < 0.002) between the scores and the abundance of “glycogen degradation” in bacteria communities. On applying the system to bacteria genomes, CBM588 had only 1 match and ranked higher than the other 8 bacteria evaluated. The gram-stain properties were significantly correlated to the scores (p < 5 × 10−4). The distributions of the scored protein domains indicated that CBM588 had a considerably higher (p < 10−5) proportion of carbohydrate-binding modules than other bacteria, which suggested the superior ability of CBM588 to access carbohydrates as a metabolic driver to the bowel microbiome. These results demonstrated the use of integrated counts of protein domains as a feasible readout for metabolic potential within bacteria genomes and human metagenomes.

Funder

Ministry of Science and Technology, Taiwan

Far Eastern Memorial Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dysbiosis, Tolerance, and Development of Autoimmune Diseases;Immunology of the GI Tract - Recent Advances;2022-12-21

2. Understanding the potential of lactobacilli in recurrent UTI prevention;Microbial Pathogenesis;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3