Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios

Author:

Shiru Mohammed Sanusi,Shahid Shamsuddin,Dewan Ashraf,Chung Eun-Sung,Alias Noraliani,Ahmed Kamal,Hassan Quazi K.

Abstract

AbstractLike many other African countries, incidence of drought is increasing in Nigeria. In this work, spatiotemporal changes in droughts under different representative concentration pathway (RCP) scenarios were assessed; considering their greatest impacts on life and livelihoods in Nigeria, especially when droughts coincide with the growing seasons. Three entropy-based methods, namely symmetrical uncertainty, gain ratio, and entropy gain were used in a multi-criteria decision-making framework to select the best performing General Circulation Models (GCMs) for the projection of rainfall and temperature. Performance of four widely used bias correction methods was compared to identify a suitable method for correcting bias in GCM projections for the period 2010–2099. A machine learning technique was then used to generate a multi-model ensemble (MME) of the bias-corrected GCM projection for different RCP scenarios. The standardized precipitation evapotranspiration index (SPEI) was subsequently computed to estimate droughts from the MME mean of GCM projected rainfall and temperature to predict possible spatiotemporal changes in meteorological droughts. Finally, trends in the SPEI, temperature and rainfall, and return period of droughts for different growing seasons were estimated using a 50-year moving window, with a 10-year interval, to understand driving factors accountable for future changes in droughts. The analysis revealed that MRI-CGCM3, HadGEM2-ES, CSIRO-Mk3-6-0, and CESM1-CAM5 are the most appropriate GCMs for projecting rainfall and temperature, and the linear scaling (SCL) is the best method for correcting bias. The MME mean of bias-corrected GCM projections revealed an increase in rainfall in the south-south, southwest, and parts of the northwest whilst a decrease in the southeast, northeast, and parts of central Nigeria. In contrast, rise in temperature for entire country during most of the cropping seasons was projected. The results further indicated that increase in temperature would decrease the SPEI across Nigeria, which will make droughts more frequent in most of the country under all the RCPs. However, increase in drought frequency would be less for higher RCPs due to increase in rainfall.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3