Relating the ultrasonic and aerosol filtration properties of filters

Author:

Alvarez-Arenas Tomás E. G.,Sipkens Timothy A.,Corbin Joel C.,Salso Patricia,Genovés Vicente

Abstract

AbstractNon-contact methods are useful to improve the quality control of particle filtration media. The purpose of this paper is to investigate the correlation between the filtration efficiency of a porous sheet and its ultrasonic properties obtained using a non-contact technique. An air-coupled ultrasonic technique is used to obtain rapid measurements without affecting the integrity of the material. High frequencies (from 0.1 to 2.5 MHz) are used to improve technique sensitivity, and transmitted waves are measured to probe the internal properties of the material. Measurements of transmission coefficient spectra (amplitude and phase) and the corresponding ultrasound velocity and attenuation coefficient at different frequencies are obtained for a set of filtration media with well-characterized properties. Results show that the ultrasonic properties of filtration media vary as a function of basis weight, and therefore filtration efficiency, for a given charge state. However, the effect of electrostatic charge on ultrasonic propagation is almost negligible, as expected. We conclude that ultrasonic transmission may provide a valuable tool for the continuous online monitoring of material quality during fabrication and as a method to tease apart mechanical and electrostatic contributions to particle filtration.

Funder

European Union and EU “NextGenerationEU”/PRTR

Spanish Agency for Science

Public Health Agency of Canada and the NRC Pandemic Response Challenge Program

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3