Mitigating belief projection in explainable artificial intelligence via Bayesian teaching

Author:

Yang Scott Cheng-Hsin,Vong Wai Keen,Sojitra Ravi B.,Folke Tomas,Shafto Patrick

Abstract

AbstractState-of-the-art deep-learning systems use decision rules that are challenging for humans to model. Explainable AI (XAI) attempts to improve human understanding but rarely accounts for how people typically reason about unfamiliar agents. We propose explicitly modelling the human explainee via Bayesian teaching, which evaluates explanations by how much they shift explainees’ inferences toward a desired goal. We assess Bayesian teaching in a binary image classification task across a variety of contexts. Absent intervention, participants predict that the AI’s classifications will match their own, but explanations generated by Bayesian teaching improve their ability to predict the AI’s judgements by moving them away from this prior belief. Bayesian teaching further allows each case to be broken down into sub-examples (here saliency maps). These sub-examples complement whole examples by improving error detection for familiar categories, whereas whole examples help predict correct AI judgements of unfamiliar cases.

Funder

Air Force Research Laboratory and DARPA

U.S. Department of Defense

NSF

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference59 articles.

1. Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O’Brien, D. et al. Accountability of ai under the law: The role of explanation. Preprint at http://arXiv.org/1711.01134 (2017).

2. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. Preprint at http://arXiv.org/1711.05225 (2017).

3. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (7639), 115 (2017).

4. European Commission. 2018 Reform of EU Data Protection Rules (European Commission, 2018).

5. Coyle, D. & Weller, A. Explaining machine learning reveals policy challenges. Science 368 (6498), 1433–1434 (2020).

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3