Detection and classification of brain tumor using hybrid deep learning models

Author:

Babu Vimala Baiju,Srinivasan Saravanan,Mathivanan Sandeep Kumar,Mahalakshmi ,Jayagopal Prabhu,Dalu Gemmachis Teshite

Abstract

AbstractAccurately classifying brain tumor types is critical for timely diagnosis and potentially saving lives. Magnetic Resonance Imaging (MRI) is a widely used non-invasive method for obtaining high-contrast grayscale brain images, primarily for tumor diagnosis. The application of Convolutional Neural Networks (CNNs) in deep learning has revolutionized diagnostic systems, leading to significant advancements in medical imaging interpretation. In this study, we employ a transfer learning-based fine-tuning approach using EfficientNets to classify brain tumors into three categories: glioma, meningioma, and pituitary tumors. We utilize the publicly accessible CE-MRI Figshare dataset to fine-tune five pre-trained models from the EfficientNets family, ranging from EfficientNetB0 to EfficientNetB4. Our approach involves a two-step process to refine the pre-trained EfficientNet model. First, we initialize the model with weights from the ImageNet dataset. Then, we add additional layers, including top layers and a fully connected layer, to enable tumor classification. We conduct various tests to assess the robustness of our fine-tuned EfficientNets in comparison to other pre-trained models. Additionally, we analyze the impact of data augmentation on the model's test accuracy. To gain insights into the model's decision-making, we employ Grad-CAM visualization to examine the attention maps generated by the most optimal model, effectively highlighting tumor locations within brain images. Our results reveal that using EfficientNetB2 as the underlying framework yields significant performance improvements. Specifically, the overall test accuracy, precision, recall, and F1-score were found to be 99.06%, 98.73%, 99.13%, and 98.79%, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3