BAFF attenuates oxidative stress-induced cell death by the regulation of mitochondria membrane potential via Syk activation in WiL2-NS B lymphoblasts

Author:

Park Sojin,Jang Ju-Won,Moon Eun-Yi

Abstract

AbstractCell survival is facilitated by the maintenance of mitochondrial membrane potential (MMP). B cell activating factor (BAFF) plays a role in survival, differentiation, and maturation of B cells. In the present study, we examined whether BAFF could attenuate oxidative stress-induced B cell death by the regulation of MMP collapse via spleen tyrosine kinase (Syk) activation using WiL2-NS human B lymphoblast cells. BAFF binds to receptors on WiL2-NS cells. When the cells were incubated in serum-deprived conditions with 1% fetal bovine serum (FBS), BAFF reduced the percentage of dead cells as determined through trypan blue staining and caspase 3 activity. BAFF also inhibited MMP collapse with 1% FBS, as indicated by a decrease in the number of cells with high-red fluorescence of MitoProbe™ JC-1 reagent or a decrease in the percentage of DiOC6-stained cells. Reactive oxygen species (ROS) production was reduced by incubation with BAFF in the presence of 10% or 1% FBS. BAFF inhibited MMP collapse, cell growth retardation, dead cell formation, and caspase 3 activation caused by treatment with H2O2. Syk phosphorylation on tyrosine (Y) 525/526 was increased in cells incubated with 1% FBS in the presence of BAFF than cells incubated with 1% FBS or BAFF alone. BAY61-3606, a Syk inhibitor reduced the effect of BAFF on MMP collapse, caspase 3 activation, cell growth retardation, and dead cell formation. Together, these data demonstrate that BAFF might attenuate oxidative stress-induced B cell death and growth retardation by the maintenance of MMP through Syk activation by Y525/526 phosphorylation. Therefore, BAFF and Syk might be therapeutic targets in the pathogenesis of B cell-associated diseases such as autoimmune disease.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3