Machine learning model for predicting immediate postoperative desaturation using spirometry signal data

Author:

Shin Youmin,Kim Yoon Jung,Jin Juseong,Lee Seung-Bo,Kim Hee-Soo,Kim Young-Gon

Abstract

AbstractPostoperative desaturation is a common post-surgery pulmonary complication. The real-time prediction of postoperative desaturation can become a preventive measure, and real-time changes in spirometry data can provide valuable information on respiratory mechanics. However, there is a lack of related research, specifically on using spirometry signals as inputs to machine learning (ML) models. We developed an ML model and postoperative desaturation prediction index (DPI) by analyzing intraoperative spirometry signals in patients undergoing laparoscopic surgery. We analyzed spirometry data from patients who underwent laparoscopic, robot-assisted gynecologic, or urologic surgery, identifying postoperative desaturation as a peripheral arterial oxygen saturation level below 95%, despite facial oxygen mask usage. We fitted the ML model on two separate datasets collected during different periods. (Datasets A and B). Dataset A (Normal 133, Desaturation 74) was used for the entire experimental process, including ML model fitting, statistical analysis, and DPI determination. Dataset B (Normal 20, Desaturation 4) was only used for verify the ML model and DPI. Four feature categories—signal property, inter-/intra-position correlation, peak value/interval variability, and demographics—were incorporated into the ML models via filter and wrapper feature selection methods. In experiments, the ML model achieved an adequate predictive capacity for postoperative desaturation, and the performance of the DPI was unbiased.

Funder

Korean government

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3