Testing for consistency in the impacts of a burrowing ecosystem engineer on soil and vegetation characteristics across biomes

Author:

Louw M. A.,Haussmann N. S.,le Roux P. C.

Abstract

AbstractThe impacts of ecosystem engineers may be expected to vary along environmental gradients. Due to some resources being more limited in arid than in mesic environments, disturbances created by burrowing mammals are expected to have a greater ameliorating effect in arid environments, with larger differences in microhabitat conditions expected between burrows and undisturbed areas. The aim of this study was to test if the impacts of a medium-sized burrowing mammal, the aardvark, on soil properties (soil temperature, moisture and compaction) and vegetation characteristics (plant cover, species richness and species composition) are consistent across three biomes that differ strongly in annual rainfall. Burrowing affected soil and vegetation attributes, but the direction and magnitude of these biogeomorphological impacts were not consistent across the different biomes. For example, plant species composition was altered by burrowing in the arid scrubland and in the mesic grassland, but not in the semi-arid savannah. Contrary to expectations, the difference in the impacts of burrowing between biomes were not related to rainfall, with burrowing having strong, albeit different, impacts in both the arid scrubland and the mesic grassland, but weaker effects in the semi-arid savannah. It appears, therefore, that the impacts of these biogeomorphic agents may be site-specific and that it may be difficult to predict variation in their biotic and abiotic effects across environmental gradients. As a result, forecasting the impacts of ecosystem engineers under different conditions remains a challenge to management, restoration and conservation strategies related to these types of species.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3