Transcriptome divergence between developmental senescence and premature senescence in Nicotiana tabacum L.

Author:

Zhao Zhe,Zhang Jia-Wen,Lu Shao-Hao,Zhang Hong,Liu Fang,Fu Bo,Zhao Ming-Qin,Liu Hui

Abstract

AbstractSenescence is a degenerative process triggered by intricate and coordinated regulatory networks, and the mechanisms of age-dependent senescence and stress-induced premature senescence still remain largely elusive. Thus we selected leaf samples of developmental senescence (DS) and premature senescence (PS) to reveal the regulatory divergence. Senescent leaves were confirmed by yellowing symptom and physiological measurement. A total of 1171 and 309 genes (DEGs) were significantly expressed respectively in the whole process of DS and PS. Up-regulated DEGs in PS were mostly related to ion transport, while the down-regulated DEGs were mainly associated with oxidoreductase activity and sesquiterpenoid and triterpenoid biosynthesis. In DS, photosynthesis, precursor metabolites and energy, protein processing in endoplasmic reticulum, flavonoid biosynthesis were notable. Moreover, we found the vital pathways shared by DS and PS, of which the DEGs were analyzed further via protein–protein interaction (PPI) network analysis to explore the alteration responding to two types of senescence. In addition, plant hormone transduction pathway was mapped by related DEGs, suggesting that ABA and ethylene signaling played pivotal roles in formulating the distinction of DS and PS. Finally, we conducted a model containing oxidative stress and ABA signaling as two hub points, which highlighted the major difference and predicted the possible mechanism under DS and PS. This work gained new insight into molecular divergence of developmental senescence and premature senescence and would provide reference on potential mechanism initiating and motivating senescence for further study.

Funder

National Natural Science Foundation of China

Jiangxi Tobacco Corporation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3