Author:
Nie Baisheng,Ma Yankun,Hu Shoutao,Meng Junqing
Abstract
Abstract
Outburst simulation experiments facilitate understanding coal and gas outburst in underground mining. With the help of the mid-scale simulation system, a model based on similitude principle, coal seam sandwiched by roof and floor, was constructed to conduct an outburst experiment. It had a three-dimensional size of 1500 mm × 600 mm × 1000 mm with 0.5 MPa gas pressure. The experimental procedures include specimen preparation, moulding, sealing, gas charging and adsorption, and completion. The outburst process was investigated by analyzing the gas pressure variation, temperature variation, outburst propagation velocity, particle size of outburst coal and energy transformation. During the experiment, each gas charging was accompanied with gas pressure or temperature fluctuation because of coal behavior of gas adsorption-desorption. The outburst propagation velocity was 17.2 m/s, obtained by a mass-weighted calculation of velocities of outburst coal. The small-size coal particles have a higher desorption rate and tend to participate in outburst process. According to energy conservation law, the energy forms of the outburst included elastic strain energy (Ee), gas expansion energy (Ep), internal energy of coal (ΔU), breakage work (W1), throwing out work (W2) and gas-flow loss energy (ΔE), and each was calculated respectively. Gas potential energy, including gas expansion energy and internal energy of coal, registered a larger percent and was far greater than the strain energy. And it can be the main factor influencing the occurrence of low-threshold outburst. The experimental system provides a feasible way to study the initiation and evolution of coal and gas outbursts.
Funder
Ministry of Science and Technology of the People's Republic of China
Ministry of Education of the People's Republic of China Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献