Author:
Sakemi Yusuke,Yamamoto Kakei,Hosomi Takeo,Aihara Kazuyuki
Abstract
AbstractThe training of multilayer spiking neural networks (SNNs) using the error backpropagation algorithm has made significant progress in recent years. Among the various training schemes, the error backpropagation method that directly uses the firing time of neurons has attracted considerable attention because it can realize ideal temporal coding. This method uses time-to-first-spike (TTFS) coding, in which each neuron fires at most once, and this restriction on the number of firings enables information to be processed at a very low firing frequency. This low firing frequency increases the energy efficiency of information processing in SNNs. However, only an upper limit has been provided for TTFS-coded SNNs, and the information-processing capability of SNNs at lower firing frequencies has not been fully investigated. In this paper, we propose two spike-timing-based sparse-firing (SSR) regularization methods to further reduce the firing frequency of TTFS-coded SNNs. Both methods are characterized by the fact that they only require information about the firing timing and associated weights. The effects of these regularization methods were investigated on the MNIST, Fashion-MNIST, and CIFAR-10 datasets using multilayer perceptron networks and convolutional neural network structures.
Funder
NEC Corporation
Japan Science and Technology Agency
Secom Science and Technology Foundation
Moonshot Research and Development Program
Japan Agency for Medical Research and Development
International Research Center for Neurointelligence, University of Tokyo
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献