Double twist torsion testing to determine the non recrystallization temperature

Author:

Ballard Trevor J.,Speer John G.,Findley Kip O.,De Moor Emmanuel

Abstract

AbstractA double-twist torsion testing technique has been developed using a 316 stainless steel as an exemplar material to experimentally assess recrystallization behavior and determine the non-recrystallization temperature (Tnr). This new method was compared to the traditional methods of double-hit compression and multi-step hot torsion testing. The double-twist torsion test allows Tnr to be related to the extent of austenite recrystallization through measurements of fractional softening while accommodating multiple deformation and recrystallization steps with a single specimen. The double-twist torsion test resulted in average Tnr values similar to those determined with multi-step hot torsion, and a partially recrystallized microstructure was observed in the vicinity of the calculated Tnr for all three methods. The ability of the double-twist torsion test to relate the experimental Tnr to the evolution of austenite recrystallization via fractional softening measurements while incorporating effects of multiple deformation steps offers an advantage over traditional methods for quantifying changes in austenite recrystallization during thermomechanical processing.

Funder

Sponsors of the Advanced Steel Processing and Products Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3