Author:
Al-Dawody Mohamed F.,Maki Duraid F.,Al-Farhany Khaled,Flayyih Mujtaba A.,Jamshed Wasim,Tag El Din El Sayed M.,Raizah Zehba
Abstract
AbstractDiesel engine characteristics were investigated experimentally while adding different concentrations of third generation biodiesel spirulina algae methyl ester (SAME). Three volumetric blends of SAME are added to standard Iraqi diesel, namely 10% SAME, 20% SAME, and 30% SAME. The properties of the fuels were found according to the American Society for Testing and Materials standards (ASTM). Experimental work was conducted on a single-cylinder diesel engine under variable load and compression ratio. Three compression ratios are used, starting from 14.5, 15.5, and 16.5. Based on the results obtained, the presence of SAME along with diesel caused an increase in Brake specific fuel consumption (BSFC), carbon dioxide (CO2), and nitrogen oxides (NOx) while decreasing both brake thermal efficiency (BTE) and exhaust gas temperature (EGT). Hydrocarbon (HC) emissions decreased by 7.14%, 8.57%, and 10.71%, for 10% SAME, 20% SAME, and 30% SAME, respectively, compared to the original neat diesel fuel. The dramatic carbon monoxide (CO) emission reduction was at full load point. The addition of SAME from (10 to 30)% reported a decrease in CO by (6.67–20)%. NOx, as well as CO2 emission, are increased as a result of SAME addition. The compression ratio change from (14.5/1 to 16.5/1) led to increased BTE, NOx, and decreased BSFC and all carbon emissions. The experimental results are validated with other studies' findings, and minor divergence is reported.
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献