Ultra-fast adsorption of radioactive technetium (99mTc) by using mining waste clay samples, Abu-Tartur, Egypt

Author:

Ahmed Ahmed Saleh,Hassan Walaa Ali,Mohamed Mohamed Abdel-Moneim,Ahmed Ezzat Abdalla,Shaalan Nagih M.,Abukhadra Mostafa Ragab

Abstract

AbstractIn this study, we have opened a great route to fabricate a high-performance nanocomposite for various functional applications based on the composite of a natural stone. A clay sample (black shale (B.Sh)) was collected from the Abu-Tartur area in Egypt. The black shale was organically modified with organic materials in our laboratory, which is called organo-black shale (O-B.Sh). The samples were characterized by XRD, FTIR, SEM, and XRF. These techniques confirmed that the samples have multi-oxide phases with approximately SiO2 at 54.1%, Al2O3 at 24.73%, Fe2O3 at 6.02%, K2O at 1.12%, MgO at 1.09%, and Na2O of 0.09%, as calculated by XRF. The two samples were applied to the adsorption processes of the radioactive technetium materials, which have been used for the medical treatment of the cancer institute of Upper Egypt. The adsorption processes were performed at various concentrations of the radioactive material and various amounts of clay samples. The as-collected B.Sh sample showed an adsorption activity of 65%, however, the organically modified materials showed a high adsorption rate toward technetium reaches to 100% in a very short time and without any further process. The present collected materials are very promising to withdraw the radioactive materials from the saline solution to save human and environmental health. We believe these multi-compound composites may open a new approach for creating new fabric composites with high performance for various applications.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of technetium (99mTc) using modified claystone (organoclay);Euro-Mediterranean Journal for Environmental Integration;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3