Combining ability analysis of yield and biomass allocation related traits in newly developed wheat populations

Author:

Shamuyarira Kwame W.,Shimelis Hussein,Figlan Sandiswa,Chaplot Vincent

Abstract

AbstractIncreasing biomass allocation to the root system may increase soil-organic carbon stocks and confer drought adaptation in water-limited environments. Understanding the genetic bases and inheritance of biomass allocation is fundamental for drought tolerance breeding and soil health. The objective of this study was to determine the general and specific combining ability, maternal effects and the mode of gene action controlling the major yield and biomass allocation related traits in wheat to identify good combiners for breeding and enhanced carbon sequestration. Ten selected wheat genotypes were crossed in a full diallel mating design, and 90 F2 families were generated and evaluated in the field and greenhouse under drought-stressed and non-stressed conditions. Significant differences were recorded among the tested families revealing substantial variation for plant height (PH), kernels per spike (KPS), root biomass (RB), shoot biomass (SB), total plant biomass (PB) and grain yield (GY). Additive gene effects conditioned PH, SB, PB and GY under drought, suggesting the polygenic inheritance for drought tolerance. Strong maternal and reciprocal genetic effects were recorded for RB across the testing sites under drought-stressed conditions. Line BW162 had high yield and biomass production and can be used to transfer favourable genes to its progeny. The parental line LM75 maintained the general combining ability (GCA) effects in a positive and desirable direction for SB, PB and GY. Early generation selection using PH, SB, PB and GY will improve drought tolerance by exploiting additive gene action under drought conditions. Higher RB production may be maintained by a positive selection of male and female parents to capture the significant maternal and reciprocal effects found in this study.

Funder

Water Research Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3