Author:
Ren Bin,Zhou Qinyu,Chen Jiayu
Abstract
AbstractComplex assembly tasks with multiple manual operations and steps often require rapid judgment and action under time pressure and cause most human-related errors. The task switching and action transitions are major sources of these errors. This study intends to implement an electroencephalography (EEG) approach to quantitatively evaluate the mental workload during task switching and transition. The time–frequency and spectrum analysis were utilized to compute and reflect the task demand between the intervals of individual tasks. This study developed an experiment to validate the proposed assessment approach and benchmark the results with the National Aeronautics and Space Administration task load index (NASA-TLX) subjective evaluation scale analysis. The results show that the average value of the power spectral densities (PSDs) of the gamma band signal of the AF4 channel and the beta band signal of Channel F3 show distinctive signal patterns among task stages and intervals. During the interval between the idling stage and the part selection stage, the peak of the PSD envelope increased from 18 to 27 Hz, suggesting advanced cognition increases the mental workload of the interval between different tasks. Therefore, the task switching period cannot be regarded as rest and need to be optimized with better task organization.
Funder
the Key Research and Development Program of Ningbo
National Natural Science Foundation of China
Joint Funds of the National Natural Science Foundation of China
the Talent Introduction Fund of Tsinghua University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献